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Abstract

1 11 roduction

Accurate attitude information is a necessity for deep space missions. Wi hout reliable ori-
tation estimates, the ability of a spacecraft to send collected data back to carth, receive
instructions, perform maneuvers and autonomously acquire targets is severely compromised.

'he Jarge amount of time and noney inves ted in space exploration projects requires reliable
a iude determination systems in order to limit this possibility. The systems should have

he ability to estimate the spacecraft’s

orientation with high precision and autonomously

recover the attitude if 1 is Jossed or found to be unreliable.
Fortunately there are several instruments that can supply attitude information to space-
craft. control systems.  Gyroscopes, sun, and star sensors arc frequently integrated with

onboard systems to provide feedback regarding spacecraft angular displacement. The signal




estimation without priorinformationor siewsitip, thesensor. Since star ficlds are typically visible in

att orientations (for deep space missions) fixed sehisors can linage a section of sky, and determine
the correspondence bet ween the imaged stars and a catalog of reference stars st ored onboard If no
mformation is known about the corrent orientation, the entire onboard catalog can bhe consultedin
o rder to deterinine the appropriate matching.

Algorithms that autonomoeusly identify a star ficld with no a priori information regarding orien-
tation arc ideally suited for use 1 attitude initialization, support of star (rackers, andas a backup
to primary attitude estimation systems. Current CCD senisors provide a relatively inexpensive way
{o huage the sky and extract information about stellar locations and apparent brightness. A number
of algorithms for star identification exist that can determine the correspondence between the viewed
starficldand a set of catalog starsinaknownreference frame. Kosik[8] classifies anumber of differ-
ent technigues and provides a combinatorial arg uime ntwith regard oo their effectiveness along with
sore simulation results. However an extensive exatnination of how noise afleets the performance
and competence of star identification algoriths has not beery carried out in a systematic way.

In this paper, we arc interested in providing a useful framn ework for understanding and evaluating
star iden tific ation techmgues. It would be iimpossible (and unproductive) to do a comprehensive
analysis of cacli existing star algorithins in the literature over the entire ¥ an ge of possible sensor

configurations. Henee we lanited our investigation to algorithnns that et the following criterias
o lully autoniomous (110 a priori attitude knowledge required).
e Representative of a general technique used in star identification.
« Ret ur nsolutions promptly using non-specialized hardwarc andreasonableamounts of mermory.
e (ieneral technigue suitable for a small fov

We believe that i the future, spacecraft design will be toward sinaller, less expensive systeins
wit Il fewer sensors. Moving a fully autonomous star track ing anc I identification capability to cither
scicnee or navig ation sensors eliminates the need for both star trackers and sun sensors that arc
currently employed on most missions,  11ietrends in star identification and tracking for space
exploration will be toward Mully autonorous, inexpensive, i xed sensor, n arrow field of view (fov)
systems and our sclection eriteria are biased to reflect this.Many of the star identification algorithims
in the literature are not fully avitonOinous and reiy o011 other information to work properly. Some
constrainthe orientation of the sensor for withtheuse of a sun sensor as f ?], or they use previous
all it ude estimates [1 2, 7, 17]. We are interested in technigues that performadequatelyinatypical
workstation enviromnent and provide accurate solutions everiwhenthe size of the onboard databasc
is verylarge as wouldbethe case withsinall fov's (< s(1(1/77.(es).

i the next section the star identification Problem is developed in greater detailand thestrategics
11 s(, (1 tosolve iy areclassifiedintotwogeneral /1)) woaches. Ihe algorithins we sclected for more i
depth evaluation are also described there. The sinulation results of cach of the sclected algorithims

arc presented that reflect different levels and types of sensornoise, This mcasures the robustness of




the algorithn’s performanceand 1Jro\"ides insight into how well itmight perform o1 more diflicult
problems. We conclude with a discussion that concentrates o011 the difficultics encount ered with star

identification for very 1arge catalogs (. (. small fov).

2 1 ’roblem Description

Put siiply, the object of the star identification algorithm is to establish a correspon dence between
atl least two pol nts in the sensor referenice frame and star locations from arionboard catatog ina
standard reference frame. In genieral, this problem is quite diflicult; however for most "nat ural”, 21
cuclidean problem jngtances there are a number of techmiques that produce good resuits, In this
scctionwe dividethe existing star identification algorithims imto a small nutnber of classes based on
their formulation of the problemn and the data structures used to solve it. maddition, we discuss the
procedure for generating ann onboard catalog fromn a star catalog and co nclude with amore detailed

description of thie algoritlnns we have selected for evaluation.

2.1 Types of strategies for staridentification

T'he most common app roach i problem formulation for star identification is to {reat the ”known”
stoars as vert ices In anundirected graph G, with the angular separation hetween each parr of stars
serving as the cdge weights. The set of points ext racted from the sensoralso forin an undirected
graph Gig. The problem of identification is thencastas finding a subgraph of G that is isomorphic
Lo G, Star identification algorithims that makcuse of this forinmulation typically carry a databasc of
pre-computed distances hetween pairs of stars, or in some instances polygons (mainly triangles). The
goal is 1hien to construct an isomorphic subgrapl i(s) from the database with a siimilarly constructed
scensor graph. The algoritlns that form poly gons or match groups perform st aridentification inthis
faslion [8, 20,19, 1, 7,5, 6].

The othier major formulation ot the star identification problem is o associate aPalleriwigh
caclistar inthe onboard cataiog. The pattern found for an individual star should only make use
of its ncighboring sky characteri stics. This will allow shmilar patterns to be constructed from a the
sensornmage. The goal of identification is to find the catalog pattern that is closest to thesensor
pattern gencerated using sensor star 5. more formally, given a location vector v/, for a star ¢; inthe
onboard cal alog, the goal is to findsorne function f that generates pattern py. The input to f is a
neighborho od regron around the loc ation vee tor that con 1518 of the e xp ected sky for that regronas
viewaed by the sensor (for clarity, we will asswine that [ (¢7) is sullicient to indicate the region about

star ¢;). 1deally [ should have the Property {lyat:

malch (eq,55) O 17 (@G) - [ (00) 1< ¢ <l T@i) - [GE) 1, Yk

The ( parameter defines a neighborhood around cach catalog pattern in order to prevent matching

a paltern gene rated by a sensor star withno co 1 responding catalog star.
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Pigure 1: Proba bility distribution for viewing N stars in an orientation for a 4 degree radius fou for

stars down to magnitade 7.5,

1 nessence, this approachatiemptstoderive asignature, unique for cach star in the catalog, that
can be found when viewing the scction of sky with the star init. Matching seck s to find the closest
catalog st ar sig nature 1o a given sensor st ar’s signature. A database for this approach consists of
the patterns for cach onboard cat alog star, typically stored in a lookup or hash table for efliciency.

Algorithims enploying this approachinclude [13, lo, 12).

2.2 Onboard star catalog

The onboard star catalog C, is simply a subsctl of the stars whose locations are known ina standard
reference frame. Bach emtry ¢ in C will typically contain a location vector 9; and an apparent
brightness valu e by Deciding which particular stars to include in C; is a decidedly difTicult task. I'he
sclection of the st ars is dependent on the range and fov arca ot the senisor, the algorithin used for
identification, and the degree of confidence required inidentifying an arbitrary star field. The goal
i s to have a roughly uimform distribution of stars across the sky contained in C so that the chosen
identification algoritlnn perforins competently over all possible spacecraft. attitudes,

To generate a suitable €, we need to find the set of stars that are likely to be imaged by the
scnsor. Using a st andard star catalog, we can find those stars whose corrected apparent brightucss is
greater than the iinimum sensitivity of thesensor. Thestellarmagnitude value givenintypical star
calittop,sf11 ,9] is not necessarily the saine value mecasured during imaging; it usually requires some

normalization with respect to the sensor. Leibe 11 01 demonstrates howto estimate this value for a



given set of sensorparamncters. Not all of the stars brighter than the sensor’s mininum sensitivity
shouldhe inclnded in C. Stars which are close to cach ot her whieriinaged on the focal plane (e.g.
binary stars) tend to interfere with cach other during locali zation and brightness determination.
Other stars have variable brightness.  The location and brightness measurements for these two
cla sses of stars are unreliabl ¢ and are rammoved. The remaining stars that are usually detected by
thesensor, serve as the set frotnwhich C is generated.

T'he distribution of stars is not uniform over the sky. Some orientatious will have many more
stars that the sensor is tikery toimage than others (see Fignre 1), Pypically, the star identification
algCy it will require some constant number of stars k> 2 at every orientation to identify a star
ficld unatnbiguously. 'I'he value for k& depends on the algorithim and the expected level of noise in the
image. Little or no noise allows for tighter threshold tolerances resulting infewer distance/bright ness
matchies between star pairs or star patterns. luthese cases, « ¢@hbereduced without reducing the
probability of identifying the star field.

If we wish al least k stars in every orientation, thensome eriteria will have 1o beusedto select
t he best stars for ¢ Typically the brighter stars in any given sensor fov are more reliably imaged
and extracted than are dinimer St ars. A simple scan over the entire sky can be conducted with
the remaining stars. The brightest stars at cach orientation in the sensor fov canbe placed in C.
A similar strategy can be employed with the objeets imaged by the sensor inorder to lo cate likely

clenents of Cin cases where the itmage contains 1any stars.

3 Sclected algorithm descriptions

We chose to evaluate three of the existing star identification algorithins using the extraction scherne
for C as desceribed above, T'wo of « healgorithis seleet ed treat ident ificat ion as a subgraph iso-
morphism problen v while the thirdlooks to cstablish a correspondence based on a best matching
patt crn. While 4lis is not a complete survey of the existing teclimiques, thie algorithims sclected are
representative. Many ot the remaining algorithms in the literature can be considered a variation of
one of the techimiques we selected. Most of the others are cither unsuitable for fully autonomous star
identification or would be prohibitively expensive with respect to coniputing resources, especially
with large star catalogs. The algorithins sclected include a triangle matching approach, one based

on forming Matel groups or pole stars, and finally a pattern based approach using an oriented grid.
) A i & g

3.0.1  Triangle algorithm

The triangle identification algorithim is a variant of perhaps themost cornmon currently used tech-
nique. Thisapproach is similar to that outlined by [6] and attempts to match uniquely a triangle
configuration o11 thesensor with alisomorphictriangle from the onboard cat alog. One o v two
methods are typically usedin identifying isomorphic triatgles: cither SAS (side- angle-side) or SS S
(stde-side-side). In our implementation, we chose to use SSS which requires onlyasinglethreshold,

ca, Lo establish edge matel \os. The other technique, SAS, is also appropriate {and perhaps more
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Figure 2: The triangle star identification algorithm. Sce text for description.

flexible) but would require two different threshold parameters.

To achicve ofliciency in triangle identification, those triatigles in ¢ that are viewablein a single
schsor orientation must be identified initially and stored in a database.  Otherwise the cost of
generating all possible triangles in C would be incurred for cacly jdentification. Tor sinall for's and
large Cs, this would be prohibitive. In our algorithm we implemnent this database as three arrays
sorted by anig ular dist ances. Bach array holds the distance of a single leg of a triangle and a unique
number that identifies the triangle.

To generatle the database, a consistent labeling of cach triangle in C is required. Our labeling
i s based on the angular separation Values ot anarbitrary catalog ¢ riangle, Neicjer ‘The angular
separation values hetween cacly pair of vertices are caleulat ed and ordered, a < b < ¢. The vertices
can then be uniquely labeled such that, vertex 1 shares both @ and ¢, vertex 2 shares aand 11, and
vertex 3 shares b and e, Yor cach triangle in C,; a uniqucidentificationnumber e is givenand entered
along witha, b,orcintoone of three lists (hst. 1, list_2, or st _3 yespectively). After all triangles
from C arc entered, the 1ists are sorted by distance so that ranges can be extracted in O(log N)
thmeusing a binary search [15].7Phis distance database is useful for extracting the catalog triangle
identification numbers hased on leg fength.

A table called the triangle index is used to hold the vertices associated with a particular catalog
triangle. ‘The triangle identification nmnber ser v es asthe table location. At cach location, the
catalog st ar for cach vertex is identificd. Thus the distance database serves to identify the particular
triangle and the triangle index locates the corresponding catalog stars. Identification is hasedon
determining which catalog triaugle best corresponds to a given st sor triangle. MMgure 2 provides

ary overview of the significant steps in the triangle identification algorithim.
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A triangle from the sensor image, Ns;s;sy is labeled in the same manner as the catalog triangles.
lach Jeg sive is used to index the appropriate section of the distance database and find all triangle
identification numbers within :l ¢g. A counter associated with cach catalog triangle is incremented
for cachvidentification number of a matchied leg, A sensor triangle that matches three edges witha
calalog triangle is considered isomorphic. The individuals stars of the catalog are then paired with
the labeled sensor stars using the triangle index.

There are two major difficulties with the triangle algorithm that still need 1o be addressed. The
fi rst. problem deals with how the sensor tria ngles are formed. From Figure 1 it is obvious that if
triangles are made for cach set of three stars in the senisor , an inordinately large number of sensor
triang les will go through the matching process. However, the nunmiber of stars in C is about k per
orient ation by construction. Hence we carn limit the number of stars from which sensor triangles are
constructed 1o the brightest ak. The a term helps insure that imost o the sensor stars that are atso
i C are avail able to be mat ched. Otherwise measurement noise in brightness determination might
madvertently exclude stars that we want Lo include,

The second p roblen has to do with evaluating the miatched sensor/catalog star pairs. 1deally we
would like 1o correctly identify as many scnsor stars as possible since this would typically provide
a better estimated attitude [16]. This suggests that all the matched sensor triangles be used in
generating the correspondence (instead o ¢ the best matched triangle, for instance). The problem
i's thal some of the sensor triangles matches may be spurious (i.e. they are paired with the wrong
catalogtriangle). This occurs when a senisor triangle is matched with more than one catalog triangle
or a sensor triangle not in C is inappropriately identified with a catalog triangle. These cases arise
because noise and measurcinent error require looser tolerances forcing  a larger value for ¢ while
farge mwimbers of catalog, trian gles require tighter tolerances to insure uniquencss, Inany event,
some iethod nust be used to reduce the possibility of incorrectly identifying ar imaged section o f
sky with a spurious triangle match.

Oursolution is to initially remove any matched catalog triangle if the apparent hrightness of any
star al a vertex is not within ¢, of the brightness al the corresponding sensor vertex. While this
does entail the use of another parameter (dependent on sensor accuracy), it should serve to make
cach of the catalog {riangle more unique resulting in fewer spurious matelies. Our final evaluation
step is Lo look at the locations of the stars identified. 1 f there are no spurious mat ches, all the
identified stars should be within a single fov diameter. We can use this idea to scarch the identified
locations for the arca with the greatest nuinber of stars. Provided that the scnsor fov is small with
respect to the entive sky and spurious matches occur uniformly over it, more than three identified
stars in a single arca is good evidence that the matches are not spurious. Those identified stars
not in the arca arc removed as spurious. The identification portion of the triangle algorithm js

sunmmarized below.
1. Find the brightest ok objects from the sensor image

2. Generate a list of Cf ak ) sensor triangles for identification.

o



3. Yorcachtriangle, label the vertices, and increment a triarnigle identification counter for cach

catalog edge that is within <t ¢4 of the appropriate sensor edge.

4 . For cacl counter with value three, determine if the brightness for cach labeled sensor vertex

is withind ¢, of corresponding catalog star. If they are, put the star pairs in a matched list.

5. 1f there are no items in thematehed list indicate failure. Otherwise check to see that al catalog
st ars are within the same sensor fou diamcter. If they are not and alargest grouping of catalog
star s exist s within the samne fou, consider this group the identifiéd st ars. If no largest group

exists (they are al of cqualsize), indicate failure.

3.0.2 Match Group algorithin

Thematch group algorithim is another commmonapproact! wo star identification that secksto find ar
isoinorphic subgraphan the catalog for a spec i1ic configuration ot sensor stars. This techmique was
first discussed by K osik 181 anda further refined by others (19, 1]. Qur implementation and description
of the match group algorithin is essentially as described by van Bezooijen (207 thoughwe aida not
fully utilize all of the verification steps reported there,  Inst cad, we simply check for the Jargest
set of st ars in cach matel ed group that mcet the distance toleran ce. While other verification steps
could certainly be employed that may marginally iimprove the identification rate, we arce mainly
interested in the performance and competence of the underlying algorithm so it is our intention to
have the verification steps be as similar as possible. The verification step employed by the matel
group algorithin is 1 ore powerful than those used by the triangle and grid algorithins, but the
identification strategy requires additional ch ecking to preserve its integrity.

Theideain this algorithim is to find a catalog star (polc star) whose distances to its neighbors
i's most similar Lo a given sensor star and its neighboring stars (satellites). The configuration to be
matchied is shown in the upper leftpanel of Figure 3. The distance from the pole star 10 cach of the
othersengor stars is used to index a table of distances between pairs of stars in C whose distance is
less thanthe fov diameter.

The entries in the table consist of a distance value and pointers to the two catalog stars. The
table entries within ol ¢4 of {he sensor distance are located using the strategy described for the
triangle algorithim (binary interval search). The brightness values of the catalog stars are used (o
determine the appropriate match between the sensor segient and cach matel ed catalog segment.
If the brightness values arcwithinzte, for botliendpoints, thesegment is consideredmatched. I is
possible that the catalog segment could mateliintwo ways, in which case both natches need to be
inchaded.

Onceallof thematched catatog segments are extracted from the « able, the algorithm determines
thelargestiateh gyoitn). Siuce the pole star in the sensor aPPCars jy cachi of the segiients used in
indexing the table, its corresponding cat alog star should appearin the set. o f matched segments for
cachsatellit e star. Due to measurciment error, the addition/loss of stars from the star ficld, and noise,

this may not be the case but large match groups do provide good evidence that a correspondence
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may exist, The Jower Teft panclinFigure 3 demonstrates a method for keeping track of themnatcl)
groups.

Pach match g roup is identified by the catalog star ¢, paired with the sensor pole star s,. I'or
the endpoint associated with g, 1 catalog star /Cntification Mumber is entered into iatceh group
i undler its cor respond ing sensor star.  After all the catalog scgiments have been entered, the mmatch
groups for the particular clioice of pole stars is complete. As was the case for the triangle algorithin,
this procedure is then repeated with other sensor stars so that ok stars are processed.

After finding the match groups for cach of the sensor pole stars, the next step is to determine
which of the large match groups are consistent. This catihe done by verifying that the satellite stars
in the mideh group and the associated catalog qars are within tolera nee.  Of course many of the
mat ch groups will be redundant as th ey are the ssime section o sky ecntered ondifl erent pole stars.
A's these are easily identified, they are removed and shmply treated as a single match group.’I'he
Targest consistent mateh 81000 s then considered the appropriate correspondence. Thealgorithn is

sunnarized helow,
1. ¥Find the brightest ak objects from the sensor image.

2. Make cach of the ak objects a pole star, calculate the distance between it and its neighbors,

and find the segiments in the distance database which are the same size - ¢q.

3. For cach sensor group, if possible, label the vertices of cach catalog scgment so that the




brightness values of the sensor and catalog stars are within -l ¢, of cach other. Register cach
£ , £

segiient in the appropriate match group.

N

Find the largest consistent match group by verifying the distance relationships amongst the

satcllite stars in the group.

0. Il there is no Targest mnatch group or e size of the largest match group is not suflicient the

algorithin returns failure.  Otherwise the match group provides the correct correspondence

between the sensor and catalog,

3.0.3  Gnd algorithm

The last algorithm that we have selected forms a pattern around a given star and scarches a sel

)

of patterns generated from the stars in C in order to determine the best mateh. ‘The algorithin

deseribed here can be viewed a

an extension of the algorithm described sy Liche [10]. In that
algorithii, a pattern is generated fromn a given star and its two nearest ncighbors. The pattern
consists of the angular separation between the given star and cach neighbor and the angle bhetween
then. Tach icasurement is normalized and concatenated together to form a s ingle munber which is
then used to index a hash table. The entry in the table gives the appropriate correspondence. In the
grid algorithm [13], the pattern is formned from the entire surrounding star field thus encapsulating
more mformation. Figure 4 demonstrates pattern forination in the grid algorithm.

I'he patterns are generated by initially picking a star s;, finding the closest neighbor s,,, outside

some radiug », and orienting a grid on the coordinate system defined with s; at the origin and s,,

imdicating the positive x-axis. All stars within the pattern radius 7, arc than projected onto the

grid. I'is process is shown i Figure 4 pancls A-C. The grid is of size g x g and is typically at

a much lower resolution than is the sensor, The resultant pattern is simply a bit vector with a 1

in cach grid cel that has a star and 0 in cells that don’t have a star (sce panel 1) Figure 4). This
pattern is the signature for star s;

To determine the best matelr with the catalog patterns, a bit comparison is made with cach
pattern in the catalog. The agreement between two patterns is found by finding the total number

of on grid cells that are shared. Between sensor pattern p, and catalog pattern p,, this value i

expressed as:

gy

NU Vi N ey

iz 1
where A s Jogical and of the two bits,

The closest matching catalog pattern pe, is considered to have the largest sum from the above
expression. I the value of the sum is above a threshold mn, sensor star s is paired with catalog star 7.
The value of 1 is set to make it highly unlikely that two random patterns with the average nunber
of stars @ would have a sum greater than . T'he probability of getting more than i matches must
be quite small (i.e. 1 must be relatively large) since the sensor patlern is ¢ smpared with thousands

or perhaps even tens of thousands of catalog patterns.

10
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Figure 4: Pattern formation in the grid algoritlnm. Sce text for description.

Tinplernentation of a bit vector and the comparison of the sensor pattern with cach catalog pattern
i more meflicient th an 1s necessary. The nit-vector is Lypically quite sparse, cnough S() thatsimply
koep ing track of cach grid cell with a star in alist uses less memory. This alternate representation
also suggest s a convenient storage mechanism for t he cat alog pat ternis. 1 nstead of keeping an array
of catalog patterns, eachi pattern can be entered into a tableindexed by grid cell location. A table
entry is simply a pointer to a catalog star that has the corresponding grid cell in its pattern.’I'he
identification process for a sensor pattern is to read the entries in the table at cachi grid location wit h
a star, Incrament a counter associated with cach imndividual star in the table entries; and keep the
cata log star index of the counter with the greatest Value. IT1¢ star patiern associated with this star
is then the closest iatching catalog pattern. If the nurnber o matches is greater than a threshold
paramcter (deseribed earlier as ¢) a matchoccursbetweent lie sensor star and cat slog star al the
center of cach respective pattern.

As was the caseinthe first two algorithims, we arconly interestedin forming patterns for sensor
stars that have a corresponding catalog st ar so that we only select the ak brightest stars in the sensor
field for identification. Unlike the first two algorithims however, there is no excessive computational
domand inusing all the stars in thesensor field to form the patterns. Utilization of all stars nekes
cach of the patterns nmore unique, providing greater assurance that the matched star pairings are
correct. This however, now requires that the catalog patterns include the entive surrounding stay

field that the sensor is expectedio sce (not justother catatog stars). T'he following is a brief outline

11




of the identificat ion portion of the algorithim (sce (131 for additional det ails):
1. ¥ind the brightest ook objects from the sensor image.

2. Vor cach  objeet, find the mnearest neighboring  stay, onénide grid and form a Patter

using the entire serisor ficld.

3, Pmid the cosest matehing catalog pattern. 1f thenuimber of matchies is greater than m, pair

the sensor star with the catalog star associated with the pattern.

4. Yerform a consistency check similar to the triangle algorithin; look for the largest grouping of
identifiedstars within the fov diameter of cach othier. If the size of this group is greater than 1,
return the pairings imthis group. 1f 110 largest group exists, or no identifications occur, report

failure.

4  Simulationecenvironment

Star identification takes place 4 typical machine vision context Aroinitial raw image is yreceived
from the senisor and processed Lo extract a set of objects and their propertics. Unlike most problerns
in machine vision however, the properties of stars t ypically used for ident ificat ion (location and
apparent brightness) are well defined and difliculties arising from occlusion, scaling, and object
appearan ce {I renot of Majorconcern. St ars (due to their great distance) can be treated as point
sourcesof light from a location on the unit sphere. Using an idealized model of a sensor (sce
Iigure 5), thelocation (a, ¥), of anhimaged st ar onthe focal p lane cani be determined from the star’s

unit vector o in the senisor’s reference frarne as follows:
£os f 3 2)]/?)3

vy [avs/uy

I'hie coordinate (2, y) is thelocation point of the objectonthe sensor p lane and f is the effective
focal length in the sat ne units. The star locations are derived by translating the sphierical coordinates
found i standard stellar catalogs to a rectan gular system and rotating the sky to the appropriate
sensof orientation.

The minimum sensitivity of the sensor is used to decide if astarin the fov is bright enoughito be
imaged. A highrangetermn (1ow stellarmagnitude) indicates the extent of useful briglitness mea-
surcmenisonastar. A star brighter th an this val ue is imaged but the reported yulue is simply equal
to the maximum brightness. A lso included in thesensor configuration are noise terms specifying
Jocation and brightuess accuracy, expected deviation in eflective focallenigth and its corresponding,
moeanvalue,

T'o provide realistic sensor locationshowever, the accunulated error from imaging and object
extraction should be reflected in the mput coordinates.  Thie amount of error that occurs in the

mdividuallocations arises from a number of diflerentsources. 1 the lens/senisor systemn dispersion,

12
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abert ation, distor tion, focal length deviation, cte. tend to perturh how the light falls on the sensor
plane that i u ncorrected ywopld chiatige the point to point correspondence hetween ¢ he iiage plane
andthetrue worldstate. Most of thisiype error can be corrected during calibrat ion and would be
senisor specifie [9], However the change in focal length due to thermal expansion and contraction
is alik cly source of syst cmati ¢ error from thi s syst eni that 1s connnon to all star se nsors. We can
expect deep space probes with niany years o f continnouns operation Lo experience this type of noise
with some certainty. The sensor locations of the stars are casily derived with the use of the above
cquations given the change in focal tength.

A change in focal length will also aflect the overall brightness measurement for iimaged stars.
The point Jocation on the sensor plarnie is usually taken as the centroid of a blob of activation] over
anumber of pixels (see Iigore6). Theblob is generated by slightly defocusiug the lens (henice the
ellective focal length of theidealized sensor) so thatphotons froma light source will strike a number
of neighboring pixels i the sensor. The activation of cach pixelinthe 1)101) canbeused to construct
acurve and the apparent brightness estimated from that. A change in focal length will aflfect the
size of 1hie blob, int roducing systernic error in brightness determination. T'histype of error is easily
incorporated in the simulation enviromment by adding or subtracting a fixed value to ecach of the
imaged star’s brightness.

In addition to the systematic error generated by the lens/sensor system, there is a considerable

amount, of noise introd uced by this systemand during the prepraocessing of the sensor image. Difluse
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Iigure 7. Generating a sct of stars for identification  Systemnatic error is itroduced in the box
labeled image Production while Noise Production acids siniple gaussian error to lint], the brightness

and location valu ¢s.

lighting, radiation, planctoids, and limited sensor precision cause the addition or deletion of expected

viewable objects, and underimine the ability of the extraction p rocess 1o accurately nica sure the
brightness andlocation of a star. 'T'he star extraction process itsell also introduces additional error
with theuse of thresholds inlocal izing the blob and in calculating the brightness curve, hinaged stars

neat the threshold face the possibility of being eliminated as sensor objects if none of the pixels in

their blobs are above the threshold. Fhis results in the loss of stars that are expected to be viewed.
The opposite sitnation is also possible inthatstars slightly below the minimum sensitivity of the
sensor conldbeimaged providing additi onal, unexpected objects [3, 14]. The calculated location of
thestar 011 thesensor plancas deteriined by the previous equations is used as the expected location
and is perturbed yeing an error parar neter (in pixel units of standard deviation) and Gaussian noise.
A similar processoccurs for the measured brightness values. Steps 1 and?2 of Iig ure 6 show where
noise is itroduced during the nnaging process.

The other source of noise (shown in the figure as step 3) is duc to the onhoard catalog itsclf,
The values incorporated in a star catalog typically have a smallammountof error 11 11 duetostellar
motion, measurcment processes, visual magnitude to sensor brightness, unidentified stars, cle. lor
large fors, the error introduced by « he catalog is relatively sinall when compared to other sources of
noise, however for 1arger catalogs and smaller narrower sensors, this noise may be significant and s
included in the software environment. Catalog paramcters indicating the deviation for the location
andbri ghtness of individual st ars are usc (1 to generate cadiof the onboard catalogs usecl by the star
identification routines. The stellar cat alog used to generate the s ky images is considered the true
sky as ina Monte Carlomcthod.

Figure 7 shows an overview of the sky simulation process.  Star identification algorithms are
tested wrider a greatl variely o ¢ changing noise conditions so that some measure o ¢ an algorithn’s
robustness can be learned. Inaddition, a sct of parameters for a single systemn conifiguration car
be tested against a number of different algorithins or their parameter setthigs to discover which
partientar algorithm or setpoints arc most effective. Qur evaluation of the selected star identification

algorithimmakesuse of this methodo logy in the resulis reported in the next section,



5 Results

1 n this scetion we describe the perforinance and competence of cach sclected st ar identification
algorithin. Perfornvance issues are concerned with the arnount of memory the catalog anddata
structures consume as well as e tnne 1t takes to determine the correspondence. For our purposes,
algorithmcompetence deals with the overall robustness of the algorithu in handling noise and
examining what sitnations lead to failure.

The* true” sky for the simulation environment is from a catalog provided by the Autonomous
Feature and Star Track ing project (AFAST) at the Jet Propulsion Laboratory. ‘t'he catalog contains
nearly 36,000 stars down to a stellar magnitude of 8.(). The sensor configuration simulated in these
experitments was desigt ied Lo mnake maximal use of the avail able stars. The simulated CCI used
a H12x5H12 pixel array (J] .8 wmm) with cach dimension spauning a full 8 deg arc. The minimum
sensit v ity of the sensor was set at 7.5 unils sterrar magnitude aud the reported values ranged to a
maximuin of 2.5 units. The star ficld images for such a system contained approximately 45 stars on
average. 'The fovarca was about 64 square degrees while the eliective focal lengih was 84,2111111.

The ouboard catalogs Cfor the starvidentificationalgorithins were constructed as described
previously using the values of the "true” sky perturbed by a sm all amount of g aussian noisc for
boththe location (1 arc second standard deviation) and the apparent Iyighiness (0.1 units stellar
magnitunde st and ard deviation) values. T'wo different size catalogs were gencerated, one requiring at
least b stars per fov and the other 9 stars. ‘The resultant catalogs contained 7548 and 11,901 stars,

or aboul 9 and1 4 stars 011 average per inage, respect ively.

5.1  Performance

l'or core {onhoard) catalogs of both sizes, we generated a database suitable for cach of the sclected
algorithms. I'igure 8 provides the total number of datastructures required to build the supporting
dat abasce for cacl algorithin.  The total mer nory for cacli algorithi is somewhat dependent 011
implementation details, but assuming that a star reference can be made with 2 bytes while a float
requires 4, a fairly accurate estimation can he performed.

The triangle algorithm requires three floats for cach leg of a triangle in the database, plus a
reference Lo the triangle (4 bytes) and cach of its stars for a total of 22 bytes per triangle. The total
mernory consumed by the algorithim also includes the cost of storing cachr star in C, which requires
two floats Lo specify cachi location and a float 1o indicate apparent brightness. ‘I'he actual mecmory

, %0 t hat we need not consider

uscd inidentification is quite small when compared to the database
it. 'Themernory for the smaller core catalog totals nearly 3Mb while the larger catalog uses about
12Mb.

T'he match group algorithm uses much less memory for database structures as comparedto the
triangle algorithim, It has traded the static ncmory allocation strategy of the triangle algoritlon’s
database for a much larger scratch space in active menory in order to forin the groups. The size

of t he scratch space needs to be as large as the worst case condit ion (or et iploy some camplicated




Algorithim C| - 7548 |C|- 11,901
Triangle 134,000 triangles | 555,000 triangles
M atch Group 6,0)()() pairs 166,0)()() pairs
Grid 7H48 patterns 11,901 patterns

Figure 8: Size of supporting datastructuresfor cach algorithim

ch ecking) whichdepends 011 the nunber of matchies per edge and the total number of edges involved
in the matching. These values vary with the parameter settings of the algorithm as determined by
thenoise leveland the size of the catalog. If the algorithm is operating ina noisy environmnent, the
average nuniber of matches can be as high as 4500 per edge. Torming pairs with the 10 brightest
st ars from the sensor image results inusing alinost the entire catatog as apolestarinamatch group
so thad the serat clvspace ends up being as large or larger than the space for C. The entire manory
then consists of 2 star references Per ¢dge and its distance, pl us two times the size ot ¢ (we are
assuming that the serat ¢l space and the space required by the core catalog are roughly equal). I'or
the smaller core catalog this works out to be abont 0.7M b, while thelarger cat alog consuines over
1 .GMDb. The non-lincar incrcasc in space occurs here due to the change in core star density from o
starsper fov for the smalley catalog to 14 for t helarger one. This results i the total nunber of
cdges per fov increasing by about 2.5,

I'he mermory cons umed by cach patternin the grid algorith m depends 011 the average mimber of
stars included ju the pattern. YFor the sensor systein and parameters we are using, this works out to
he about 25 stars. A s cach colunm in the loo kup table represents apattern grid cell,only a single
reference to the central star of the pattern is requived. A's was the case with the triangle algoritlm,
the active memory is quite small as compared to the catalog and lookup table, so we do not include
it T'he tots] mernory for the smaller core catalog 1s nearly 0. 5Mb while the large cat alog requires a
little over 0.7Mb.

The other miaj or clarnenit in performance is the amount of time required to return the correspon-
dence or indicate failure. T he time per identification is dependent on a nminber of factors: the size of
C, the amount of noise, the individual algorithim paraincter settings, and how many stars fromthe
sensor image are tested for membership i C. ‘Tie subgraph strategies (inatch group and triangle
algorithms) are extremely sensit ive to the particular thresholds used, and times vary considerably
depending on their settin gs. ‘To make the comparison between the algorithn ns, we report the time
for conditions that are likely to be experienced.

The acceptable tolerance for distance matehing for cither triangle edges or star pairs was sct at
the simallest value (i.e. the value thatl generated the fewest distance Pair matcehes on average) that
achicved the highest identification rate whenthelocation of a st ar onthe sensor was perturbed with
gaussian noise of 1 pixel sta ndard deviation around the true location. This resulted in about 1250
matchesper edge with thesmallersized €| and over so00 matches onaverage for the larger cat siog,

I'he actual noise enviromment used inthe test w as maintained with a location error of 0.5 pixels
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Algorithm C

= 7648 | |C]: 11,901

Triangle 18 8.3
Match Group 1.6 7.4
Grid 0.04 0.12

Iigure 91 Average time in seconds to identify a star field. The location error is 0.5 pixels and

brightness error is 0.3 units stellar magnitude (plus systematic error incorporated in the catalog).

and brightness deviation of 0.3 units stellar magnitude. For the triangle algoritlhun, imatching was
conducted usmgonly the 7 brightest stars onthe sensor for a total of 56 t riangles. The mateh group
algorithim made use of the top 1 () edges for atol al of 45 pairs while t hegridalgorithn composed
patterns with the 15 brightest stars as the central star for the smaller catalog, and 27 brightest for
the larger sized C. The grid algoritlnm made usc of a 40x40 grid.

Figure 9 presents the resul ts of the thne experiments. Thetable ciearty shows the cost inherent
in expanding the catalog. Both o ¢ the subgraph strategics appear to have a quadratic growth rate
hidden in the noatehing strategy so that very large catalogs could be problanatic (the number of
sensor stars evaluated in both algorithins w a s held const ant). For the grid algorithim, the increased
nunber of stars evaluated is likely to explainmost of the growth. Indeed if we evaluate 27 senisor stars
i the smaller sized ¢ the runtime per identification increases from (). (m seconds to 0.09 scconds. A
strictly proportional inercase in runtime for the larger cat slog would work out to about 0.1 4 scconds
sothat the reported thne of ().1 2 scconds reflects the thine hidden by the lo okup table.

5.2 Competence

"T'he second focus of our results is on how wel  the algorithis perform under various noise conditions.
We concentrate o011 exploring how the ident lication rate changes as different types of noise levels
increase. Qurincthodology is similar to that found i [4]. The algorithin p arameters are fixedand a
single noise source is increased while the others are held at typical levels. The change in identification
rate demonstrates the algorithi’s underlying robhu st n ess.

Our first two tests look at cach algorithin’s best ident ification rate which returns the matching in
less th an two scconds. This time Innit is certainly near the out er envelope for responding to crucial
mnssion operations and represents a reasonable atnount of time for this size problem. T'hie distance
parameters for the triangle andmatel group» algori thms were set as described in the previous scetion
{about 1.5 pixcls). The brightness threshold was set at 1.0 units stellar magnitude. Both the triangle
and grid algorithims niad ¢ use of the simaller catalog in order to meet the required time constraint.
The triangle algorithm generated triangle using the 7 brightest stars (b6 triangles) on the sensor
while the match group algorithm exploited the brightest 10 stars (45 edges). Due to its superior
time perform ance, the grid algorithi used the larger core catalog, and attempted to match the top
27 brightest stars on the sensor. Thegrid size W+SlIElilltii llecl at40x40 duringallthe tests.

Iligure 10 and 11 show theidentification rate for the three algorithnns as the instrument accuracy
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standarddeviation o (0.5 pixels. Thestandard deviation for the brightness error is shown along the

horizontal axis inunits stellar magntude.

decrcases. Bach algorithin was presented with asequence of 500”7 star ficlds sclected randomily to
identify at cach shown noise level. The brightness values reported to the algorithm fromthe sensor
were perturbed with gaussian noise so that some stare that would typically be visible were lost (i.c.
below sensor minimunn sensitivity). About 2.6 stars PO image disappeared, on ayerage for 0.8 units
standard deviation instellar magnitude withthe average increasing lincarly up to 13.0 stare per
image for 2.() units. In addition to the stars lost, some stars that would not normally be seen were
imaged so that 1.8 extra stars appeared per image on average at 0.3 units deviation and 3.8 stars
at. 2.() units. Yor Figure 1 the brightness deviation was maintained at ().3 units stellar magunitude
while Figure 11 shows the identification rates with the location deviation held at 0.5 pixels,

1 ‘he false positive rate (indicating a wrong correspond ence) for the two subgraph matching al-
gorithms varied linearly with the position accuracy. At 0.5 pixels deviation the pereentage of false
ident ificat ions was 1.5% and increased to nearly 15% for 2.0 pixels. For high noise levels in bright-
ness aceuracy, nearly 1/5 of the non-identificd orientations were mis-identified. OF t hemis-identified
cases however, close to 1/8 identified the correct scction of sky bhut{ailed to pair the senisor/catalog
stars correetly, over therangeof tests discussed in this section, the grid algorithnm experienced only
{wo false positives.

The relative steep drop in the identification rate (as compared to the grid algorithm) for the
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Figure 12: The three curves represent the percentage of star ficlds identified over 500" randorn
orientations of the sensor for cach Plotted point. ‘The brightness error was held constant with  a
standard deviation of 0.3 units stellar magnitude. The standard deviation for thelocation error is
shown along the horizontal axis in pixels. The triangle and grid algorithms usc anadapt ive threshold

andthe grid algorithin uses the smaller catalog while checking only the brightest 1 () sensor stars.

triangle and match group algorithims stems from (in part) the selection of the distance threshold. 1f
we use an adaptive threshiold for these algorithms, there is a significant linprovement in the curves.
The stability of the grid algorithi’s identification rate is dependent 1o a degree on the nummber of
sensor star patterns formed and the size of the core catalog. If we use the simaller catalog and limit
the number of sensor stars ch ecked to be comparable with t he other algorithims (1 (), a noticecable
decrcase 1nthe algorithin’s robustness is apparent Figure 12 shows how the respective identificat jon
rates change as the accuracy of the locat ioninformation varies.

Our final result examines how systematic error aflects the identification rate for cach of the
algorithins. To accomplish this we assmne that the eflfective focal leniglhy of the sensor syster n has
changed as could happen if the systemn is subjected to substantial therinal stress. As inthe previous
experiments, other sources of noisc are held at nominal values, in this case 0.5 pixels deviation for
location and 0.3 units stellar magmtude for brightness. The cffective focal length is changed from
the calibraied value (84.21mmm) in Jnim increments, Figure 13 shows the identification rate for cach

algorithim (above b0% ) as the effective focal leng th changes by about 3.6%..
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additional evidence to be accunlated for a senisor nnage to paintain the same star identification

rate.

6 1)iscussion

The results from the previous section showed that the star identifica tion strategies based on distance
matching between pairs of stars are considerably less robust than the patiern matching algorithmn
tested. T'he change inident ification rates over the diflerent noise cond itions provides us with a direct
measure of how unigue cacl star field is withinthe underlying Patterngpace that the particular star
identification algorithm is working in. A 10 bus { problemn forimulation provides maximum separation
bhetween the individual subgraphs or patterns given an arbitrary onboard catalog. This aids in
achi eving, a graceful degradat ion of star identification competence for high noise enviromnents and
allows for a higher density onboard catalog required for smaller fou’s,

For the more accurate, sialler fov star sensors envisaged for future space missions, denser (1nore
stars in C P fov) onboard star cat slogs are a nccessity. For such systemns, systematic error due
to accuracy himitations of the stellar catalogs, optics, etc. will become a larger portion of the notse
cenvironment. This will result 1n proportionately greater noise levels for the more accurate system.
The expected operating range in terins of pixel error of the star identification algorithnn will increase,
mecaning that the arca of interest in Figure 10 will be to the ri ght of the current range (about ().5 1.0
pixels). moorder to achicve similar identification rates for a single sensor image, more information
will need to be extracted from the star ficld (sce [18] for an alternative approach using a scquence
of sensor views). Iigure 14 provides a conceptual depiction of the problen.

1t is important then to ask how well different, star identification strategies will work ina higher

noise enviromnent. 11 is not our contention that the results of the previous section reflect the liighest
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identification rate for the respective algorithms, (Clertainly alargenumber of additional changes could
be made to cach algorithm, and to C in order Lo increase its particul ar identification rate for agiven
noise level. Using the more extensive checking described by [19, 4], for instance, results inabout a

2% improvement in the identification rate for the match group algorithin with noise levels below 1

pixcl deviation and a 1% tinprover nent for higher noise levels (adaptive threshold). However itis our
experience that inany of the verification techmigues used to weed out spurious matches inthe star
identification algorithms arc independent of the particular strategy used to make the correspon den ce,
and result in only a marginal improvement in the identification rate. Thicy ave essentially a grab
bag of tricks to aid in determining which of the identified star mnatchings arc most likely and can
casily be adapted to any of the techniques.

Our purposc in using a similar consistency check in all the algorithims rather than a more con-
prehensive routine as in [19] is to understand how well cach basic star identification strategy works,
and 10 determine the underlying robustness of the algorithm. The function of the routines we are
examining is Lo formulate the matching in such a way that the star patterns or subgraplis developed
from the onloard catalog arc as unique as possible, yet are obscrvable in a high noise environment
or a d ense onboard catalog, This cnsures that a correspondence between a given sensor image and
the correct Pattern or subgraply is possible and that otlier paticrns or subgraphs will mat chwith
Jess probability ana i1 fewer nuinbers.

The major distinetion between the two star pair distance matching strategies and the grid algo
rithie involves the uniqueness of a match, not the type of verification technique used. A single cell
location in a sensor pallern for the larger core catalog used inthe simulation will generate about
200 matches (60% fower using the sialler catalog) 011 averagdcatalog patterns that share that
particular cell), of which at least 249 are wrong. T'hic triangle and mateh 8roup glgorithins on the
other hancl) matchinore than b times as many edge pairs 011 average, over 1250 matches per edge
using the sialler core cat alog and a dist ance thireshold of about 1.5 pixels.

'I'he spurious natches (where spurions in this instance is defined as any mat chother than the

s

correct one) can be thought of as mateht ”noise”, which cffectively hides the true signal (1 natch),
thus m akiug identification more diflicult. Additional evidence is required to mnmask the true signal,
and this is provided by forming the relevant structures used inidentification cither tria ngles, iatcl
groups, 01 palterns.  However the amount of additional evidence gathiered depends (1nostly) 011
the size of the structure. The triangle algorithin’s base size is liited to three. Match groups, in
principle, provide a nuch larger structure with which to make decisions, butit is typically limited
by perfor nance considerati ons {o less than 15 (10 in our simulation). In actual practice, the average
size of the largest mateh group was muclicloser to the size of the triangle structure between 4 and
5. The size of the sensor structure for the grid algorithin is closer to 20 while the average number
of matches for a correctly identified pattern is nearly 13.

I'rom these observations it is quite casy to sce why theidentification rate of the grid algorithn
degraded much Slower than did the other two algorithms. T'hie grid algorith m performs identifica-

tion in an enviromnent that gencrates fewer spurious matchies (lower matceh noise), and provides
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significantly more evidence in thie form of a larger underlying st riicture by making use o+ stars not

in C. The two subgraph matching strategies are Jess robust hecause o I the large amount of match
noise and the incorporation of less evidence during tdentification. The olwious solution is to identify
more triangles for the triangle algorithim or to attemnpt to match larger groups for the mnatch group
algorithm.

Towever this solution is problematic at best. Performance considerations alone weigh heavily
againsi suchanapproach. As Figure a.sh ows, the use of the larger core catalog for these algorithins
resultsin a fourfold Increasciniimeto reatize & sotution, andancarthrecfoldinereaseinthe size of
the databasc. Even withihe rarger catalog, however, the change inidentification rate is quite siall
and appeared (o drop ever i more dramatically th an when using the smaller cat alog,.

Clearly the reason the performance degrades so dramatically for both of these algorithius is the
nonlincar growth rate associated with the matching operation (the grid algorith nn has a lincar rate of
growth). If n is the average number of core stars per fov, the triangle databasc grows at. O (7:3) wlile
the size of nicinory required by the match 8roup algorthnm grows at O (1:?). A near 50% increase
in the size of C resulled inclose to a 320% increase in match noise for the saime noise environment
(1.5 pixels). This greatiy slowed the identification time making it muchi k m costly o increase the
nunaber of sensor triangles or star pairs tested since this grows nonlincarly as well. 11 welet a be
the nuinber of sensor stars tested (ie. the brightest a stars), the growthi rate of edge pairsis O («?)
and is evenworse for triangles. The only benefit then for increasing the size of C is to make it more
likely that the actual sensor stars have a correspond ing match i C, but this provedtobe quite

marginal.

7 Conclusion

We have reviewed two major strategices cmployed i star identification. Qur resuits and analysis
indicate that a pairwise matching technique employed in the most prevalent routines may have
difliculties in the next generation o 1 autonomous star sensing systemns. The large, dense onboard
catalogs required for suchsystemsinevitably generate a considerable numnber of false ina tches inaking
identification more difficult. Pattern matching techniques such as those used in a relatively simple

gridalgorithin [13] scamn to holdmore promise.

]
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